Search results for "Lyapunov dimension"
showing 10 items of 10 documents
The Lyapunov dimension formula for the global attractor of the Lorenz system
2015
The exact Lyapunov dimension formula for the Lorenz system has been analytically obtained first due to G.A.Leonov in 2002 under certain restrictions on parameters, permitting classical values. He used the construction technique of special Lyapunov-type functions developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters of the system such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values, which include all parameters satisfying the …
Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents
2021
Cyclicity and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global at…
Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
2015
The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a {hidden attractor} in the case of multistability as well as a classical {self-excited attractor}. The hidden attractor in this system can be localized by analytical-numerical methods based on the {continuation} and {perpetual points}. For numerical study of the attractors' dimension the concept of {finite-time Lyapunov dimension} is developed. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of {exact Lyapunov dimension} are discussed. A comparative survey on the computation of the finite-time Lyapunov expon…
Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System
2015
In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu–Morioka system. peerReviewed
Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity
2015
Abstract In this paper a Lorenz-like system, describing convective fluid motion in rotating cavity, is considered. It is shown numerically that this system, like the classical Lorenz system, possesses a homoclinic trajectory and a chaotic self-excited attractor. However, for the considered system, unlike the classical Lorenz system, along with self-excited attractor a hidden attractor can be localized. Analytical-numerical localization of hidden attractor is demonstrated.
Lyapunov dimension formula for the global attractor of the Lorenz system
2016
The exact Lyapunov dimension formula for the Lorenz system for a positive measure set of parameters, including classical values, was analytically obtained first by G.A. Leonov in 2002. Leonov used the construction technique of special Lyapunov-type functions, which was developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters, of the system, such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values including all parameters, which sati…
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimens…
2019
In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rössler system. Using the example of the Vallis system describing the El…
On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems
2019
In this paper, on the example of the Rössler systems, the application of the Pyragas time-delay feedback control technique for verification of Eden’s conjecture on the maximum of local Lyapunov dimension, and for the estimation of the topological entropy is demonstrated. To this end, numerical experiments on computation of finite-time local Lyapunov dimensions and finite-time topological entropy on a Rössler attractor and embedded unstable periodic orbits are performed. The problem of reliable numerical computation of the mentioned dimension-like characteristics along the trajectories over large time intervals is discussed. peerReviewed
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
2020
On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global stability are estimated and the difficulties of numerically studying the birth of self-excited and hidden attractors, caused by the loss of global stability, are discussed. The problem of reliable numerical computation of the finite-time Lyapunov dimension along the trajectories over large time intervals is discussed. Estimating the Lyapunov dimension of attractors via the Pyragas time-delayed feedback control technique and the Leonov method is demonstrated. Taking into accoun…